Skip to article frontmatterSkip to article content

SENTINEL-1 L1 GRD Product Format Prototype

ESA

SENTINEL-1 L1 GRD Product Format Prototype

Introduction

In this notebook we will show an example of grd TOPSAR product and some easy usage examples

Objectives:

  • Provide ready-to-use datasets and data variable
  • Allow users to open and manipulate data using both standard external tools and the EOPF

Relevant Features:

  • Swaths, bursts and polarization are separeted in different products
  • The coordinates associated to the data are the physical coordinates
  • The zarr product will adhere to CF convetion (this allow the user to open the prodoct with standards tools, such as xarray, exploiting properly the data coordinates).

Notes:

It is a preliminary example of product

  • Not all the metadata are included in these product prototype, but they will be included in the future.
  • Among the excluded metadata, there are:
    • RFI
    • qualityInformation
    • downlinkInformation
  • The stac attrabutes are still to be defined.
  • The name of the variables are preliminary and they may change in the future.
  • Variable attributes will be refined in the future, including:
    • long_name
    • units
    • and standard names for coordinates
  • The chunking is not defined yet.
  • Products naming convention is to be defined.
  • Reading from local and remote storage with EOPF is experimental(branch feat/coords_in_vars, commit 10a4f2e1) and not officially released.1) and not offically released.

Import modules

Dependencies

  • datatree
  • eopf
  • xarray
  • matplotlib
  • cartopy
%matplotlib inline

import datatree
import xarray as xr

import matplotlib.pyplot as plt

plt.rcParams["figure.figsize"] = (10, 5)
plt.rcParams["font.size"] = 10

File path definition

GRD: S1A_IW_GRDH_1SDV_20240201T164915_20240201T164940_052368_065517_750E

polarization:VH

Remote file path

remote_product_path = "https://storage.sbg.cloud.ovh.net/v1/AUTH_8471d76cdd494d98a078f28b195dace4/sentinel-1-public/demo_product/grd/S01SIWGRH_20240201T164915_0025_A146_S000_5464A_VH.zarr"

Local file

The listed file do not work with the latest eopf-cpm library and therefore the next cells are commented out

# # Download the files into the folder ./scratch/demo_product/grd/
# !mkdir -p ./scratch/demo_product/
# !wget -q -r -nc -nH --cut-dirs=5 https://storage.sbg.cloud.ovh.net/v1/AUTH_8471d76cdd494d98a078f28b195dace4/sentinel-1-public/demo_product/grd/ --no-parent -P ./scratch/demo_product/grd/ --reject "index.html*"

# # Set the local product paths using the specified directory
# local_product_path = "./scratch/demo_product/grd/S01SIWGRH_20240201T164915_0025_A146_S000_5464A_VH.zarr"

Read local files with EOPF

# store = EOZarrStore('./scratch/demo_product/grd/S01SIWGRH_20240201T164915_0025_A146_S000_5464A_VH.zarr')
# store = store.open()
# product = store.load()
# product

Read remote files with xarray-datatree

(xarray extension that allow performing operations on hierachical structures)

dt = datatree.open_datatree(remote_product_path, engine="zarr", chunks={})
dt
Loading...

Examples of product usage

# open data with xarray
grd = xr.open_dataset(remote_product_path, group="measurements", engine="zarr")["grd"]

Decimation data

## decimation
grd_decimated = grd.isel(
    azimuth_time=slice(None, None, 10), ground_range=slice(None, None, 10)
)

## plot
grd_decimated.plot(vmax=200)
plt.show()
<Figure size 1000x500 with 2 Axes>

Geocoding using GCPs

Interpolate and assign new geographic coordinates

gcp = xr.open_dataset(remote_product_path, group="conditions/gcp", engine="zarr")
gcp_iterpolated = gcp.interp_like(grd_decimated)

grd_decimated = grd_decimated.assign_coords(
    {"latitude": gcp_iterpolated.latitude, "longitude": gcp_iterpolated.longitude}
)

Plot in geographic coordinates

import cartopy.crs as ccrs

_, ax = plt.subplots(subplot_kw={"projection": ccrs.Miller()}, figsize=(12, 8))
gl = ax.gridlines(
    draw_labels=True, crs=ccrs.PlateCarree(), x_inline=False, y_inline=False
)
grd_decimated.plot(
    ax=ax, transform=ccrs.PlateCarree(), x="longitude", y="latitude", vmax=200
)
plt.show()
<Figure size 1200x800 with 2 Axes>

Geographic selection

Region definition

lat_max = 40.5
lat_min = 40.25
lon_max = 17
lon_min = 16.5

polygon_lon = [lon_min, lon_max, lon_max, lon_min, lon_min]
polygon_lat = [lat_max, lat_max, lat_min, lat_min, lat_max]

Crop using lon lat coordinates

mask = (
    (grd_decimated.latitude < lat_max)
    & (grd_decimated.latitude > lat_min)
    & (grd_decimated.longitude < lon_max)
    & (grd_decimated.longitude > lon_min)
)
grd_crop = grd_decimated.where(mask, drop=True)

Plot in geographic coordinates

_, ax = plt.subplots(subplot_kw={"projection": ccrs.Miller()}, figsize=(12, 8))
gl = ax.gridlines(
    draw_labels=True, crs=ccrs.PlateCarree(), x_inline=False, y_inline=False
)
grd_decimated[::5, ::5].plot(
    ax=ax,
    transform=ccrs.PlateCarree(),
    x="longitude",
    y="latitude",
    vmax=200,
)
plt.plot(
    polygon_lon,
    polygon_lat,
    color="red",
    linewidth=2,
    marker="o",
    transform=ccrs.PlateCarree(),
)


_, ax = plt.subplots(subplot_kw={"projection": ccrs.Miller()}, figsize=(12, 8))
gl = ax.gridlines(
    draw_labels=True, crs=ccrs.PlateCarree(), x_inline=False, y_inline=False
)
grd_crop.plot(
    ax=ax,
    transform=ccrs.PlateCarree(),
    x="longitude",
    y="latitude",
    vmax=200,
)
plt.show()
<Figure size 1200x800 with 2 Axes><Figure size 1200x800 with 2 Axes>