
SENTINEL-1 L1 SLC TOPSAR Product Format Prototype¶
Table of Contents¶
Introduction¶
In this notebook we will show an example of slc TOPSAR product and some easy usage examples
Objectives:
- Allow easy access to the bursts, since they are the data unit that is typically processed
- Provide ready-to-use datasets and data variable
- Allow users to open and manipulate data using both standard external tools and the EOPF
Relevant Features:
- Swaths, bursts and polarization are separeted in different products
- The coordinates associated to the data are the physical coordinates
- The zarr product will adhere to CF convetion (this will allow the user to open the prodoct with standards tools, such as xarray, exploiting properly the data coordinates).
- STAC attributes(Will be added in future)
Notes:
It is a preliminary example of product
- Not all the metadata are included in these product prototype, but they will be included in the future.
- Among the excluded metadata, there are:
- RFI
- qualityInformation
- downlinkInformation
- The stac attrabutes are still to be defined.
- The name of the variables are preliminary and they may change in the future.
- Variable attributes will be refined in the future, including:
- long_name
- units
- and standard names for coordinates
- The chunking is not defined yet.
- Products naming convention is to be defined.
- Reading from local and remote storage with EOPF is experimental(branch feat/coords_in_vars, commit 10a4f2e1) and not offically released.
%matplotlib inline
import datatree
import numpy as np
import xarray as xr
import matplotlib.pyplot as plt
plt.rcParams["figure.figsize"] = (10, 5)
plt.rcParams["font.size"] = 10
swath = "IW1"
polarization = "VH"
burst_id = "249411"
zarr_name_1 = "S01SIWSLC_20231201T170634_0067_A117_S000_5464A_VH_IW1_249411"
zarr_name_2 = "S01SIWSLC_20231119T170635_0067_A117_S000_5464A_VH_IW1_249411"
Remote files path
remote_product_path_1 = f"https://storage.sbg.cloud.ovh.net/v1/AUTH_8471d76cdd494d98a078f28b195dace4/sentinel-1-public/demo_product/slc/{zarr_name_1}.zarr/"
remote_product_path_2 = f"https://storage.sbg.cloud.ovh.net/v1/AUTH_8471d76cdd494d98a078f28b195dace4/sentinel-1-public/demo_product/slc/{zarr_name_2}.zarr/"
Local files
The listed files do not work with the latest eopf-cpm
library and therefore the next cells are commented out
# # Download the files into the folder ./scratch/demo_product/slc/
# !wget -q -r -nc -nH --cut-dirs=5 https://storage.sbg.cloud.ovh.net/v1/AUTH_8471d76cdd494d98a078f28b195dace4/sentinel-1-public/demo_product/slc --no-parent -P ./scratch/demo_product/slc/ --reject "index.html*"
# # Set the local product paths using the specified directory
# local_product_path_1 = f"./scratch/demo_product/slc/{zarr_name_1}.zarr/"
# local_product_path_2 = f"./scratch/demo_product/slc/{zarr_name_2}.zarr/"
Read local files with EOPF¶
# store = EOZarrStore(local_product_path_1)
# store = store.open()
# store
# store.load()
Read remote files with xarray-datatree¶
(xarray extension that allow performing operations on hierachical structures)
dt = datatree.open_datatree(remote_product_path_1, engine="zarr", chunks={})
dt
Loading...
burst = xr.open_dataset(remote_product_path_1, group="measurements", engine="zarr")[
"slc"
]
orbit = xr.open_dataset(remote_product_path_1, group="conditions/orbit", engine="zarr")
orbit.plot.scatter(y="azimuth_time", x="position", hue="velocity", cmap="Blues")
plt.show()

Interpolate
interp_orbit = orbit.interp_like(burst.azimuth_time)
Plot
orbit.plot.scatter(y="azimuth_time", x="position", hue="velocity", cmap="Blues")
interp_orbit.plot.scatter(y="azimuth_time", x="position", color="red")
plt.show()

Calibration¶
Open Calibration lut data
calibration_lut = xr.open_dataset(
remote_product_path_1, group="quality/calibration", engine="zarr"
)
Calibrate Data
calibration_matrix = calibration_lut.interp_like(burst)
calibrated_measurement = burst / calibration_matrix["sigma_nought"]
Plot Full Data
plt.figure(figsize=(20, 4))
_ = abs(burst).plot(y="azimuth_time", vmax=200)
Geocoding using GCPs¶
Open GCP Data
gcp = xr.open_dataset(remote_product_path_1, group="conditions/gcp", engine="zarr")
Interpolate and assign new geographic coordinates
gcp_iterpolated = gcp.interp_like(burst)
burst = burst.assign_coords(
{"latitude": gcp_iterpolated.latitude, "longitude": gcp_iterpolated.longitude}
)
Plot Subset
import cartopy.crs as ccrs
_, ax = plt.subplots(subplot_kw={"projection": ccrs.Miller()}, figsize=(12, 8))
gl = ax.gridlines(
draw_labels=True, crs=ccrs.PlateCarree(), x_inline=False, y_inline=False
)
abs(burst[:, 7000:9000]).plot(
ax=ax, transform=ccrs.PlateCarree(), x="longitude", y="latitude", vmax=200
)
plt.show()


RGB Plot of two non coregistred burst¶
The RBG plot shows the shift between the non coregistred bursts
- swath:IW1
- polarization:VH
- burst_id:249411
- burst acquisition date:
- 2023-12-01
- 2023-11-19
Open Data
slc_1 = xr.open_dataset(remote_product_path_1, group="measurements", engine="zarr")[
"slc"
]
slc_2 = xr.open_dataset(remote_product_path_2, group="measurements", engine="zarr")[
"slc"
]
amp_1 = np.abs(slc_1).drop_vars(["azimuth_time", "slant_range_time"])
amp_2 = np.abs(slc_2).drop_vars(["azimuth_time", "slant_range_time"])
Compose RGB
rgb = xr.concat([amp_1, amp_2, amp_2], dim="rgb")
rgb = xr.where(rgb > 200, 200, rgb) / 200
Plot Subset
plt.figure(figsize=(12, 8))
rgb[:, :, 7000:9000].plot.imshow(rgb="rgb")
plt.show()

