Skip to article frontmatterSkip to article content

SENTINEL-1 L1 SLC TOPSAR Product Format Prototype

ESA

SENTINEL-1 L1 SLC TOPSAR Product Format Prototype

Introduction

In this notebook we will show an example of slc TOPSAR product and some easy usage examples

Objectives:

  • Allow easy access to the bursts, since they are the data unit that is typically processed
  • Provide ready-to-use datasets and data variable
  • Allow users to open and manipulate data using both standard external tools and the EOPF

Relevant Features:

  • Swaths, bursts and polarization are separeted in different products
  • The coordinates associated to the data are the physical coordinates
  • The zarr product will adhere to CF convetion (this will allow the user to open the prodoct with standards tools, such as xarray, exploiting properly the data coordinates).
  • STAC attributes(Will be added in future)

Notes:

It is a preliminary example of product

  • Not all the metadata are included in these product prototype, but they will be included in the future.
  • Among the excluded metadata, there are:
    • RFI
    • qualityInformation
    • downlinkInformation
  • The stac attrabutes are still to be defined.
  • The name of the variables are preliminary and they may change in the future.
  • Variable attributes will be refined in the future, including:
    • long_name
    • units
    • and standard names for coordinates
  • The chunking is not defined yet.
  • Products naming convention is to be defined.
  • Reading from local and remote storage with EOPF is experimental(branch feat/coords_in_vars, commit 10a4f2e1) and not offically released.

Import modules

Dependencies

  • datatree
  • eopf
  • xarray
  • matplotlib
  • cartopy
  • fsspec
%matplotlib inline

import datatree
import numpy as np
import xarray as xr

import matplotlib.pyplot as plt

plt.rcParams["figure.figsize"] = (10, 5)
plt.rcParams["font.size"] = 10

File path definition

Product Defnition

swath = "IW1"
polarization = "VH"
burst_id = "249411"

zarr_name_1 = "S01SIWSLC_20231201T170634_0067_A117_S000_5464A_VH_IW1_249411"
zarr_name_2 = "S01SIWSLC_20231119T170635_0067_A117_S000_5464A_VH_IW1_249411"

Remote files path

remote_product_path_1 = f"https://storage.sbg.cloud.ovh.net/v1/AUTH_8471d76cdd494d98a078f28b195dace4/sentinel-1-public/demo_product/slc/{zarr_name_1}.zarr/"
remote_product_path_2 = f"https://storage.sbg.cloud.ovh.net/v1/AUTH_8471d76cdd494d98a078f28b195dace4/sentinel-1-public/demo_product/slc/{zarr_name_2}.zarr/"

Local files

The listed files do not work with the latest eopf-cpm library and therefore the next cells are commented out

# # Download the files into the folder ./scratch/demo_product/slc/
# !wget -q -r -nc -nH --cut-dirs=5 https://storage.sbg.cloud.ovh.net/v1/AUTH_8471d76cdd494d98a078f28b195dace4/sentinel-1-public/demo_product/slc --no-parent -P ./scratch/demo_product/slc/ --reject "index.html*"

# # Set the local product paths using the specified directory
# local_product_path_1 = f"./scratch/demo_product/slc/{zarr_name_1}.zarr/"
# local_product_path_2 = f"./scratch/demo_product/slc/{zarr_name_2}.zarr/"

Read local files with EOPF

# store = EOZarrStore(local_product_path_1)
# store = store.open()
# store
# store.load()

Read remote files with xarray-datatree

(xarray extension that allow performing operations on hierachical structures)

dt = datatree.open_datatree(remote_product_path_1, engine="zarr", chunks={})
dt
Loading...

Examples of product usage

Orbit interpolation

open data

burst = xr.open_dataset(remote_product_path_1, group="measurements", engine="zarr")[
    "slc"
]
orbit = xr.open_dataset(remote_product_path_1, group="conditions/orbit", engine="zarr")
orbit.plot.scatter(y="azimuth_time", x="position", hue="velocity", cmap="Blues")
plt.show()
<Figure size 1000x500 with 2 Axes>

Interpolate

interp_orbit = orbit.interp_like(burst.azimuth_time)

Plot

orbit.plot.scatter(y="azimuth_time", x="position", hue="velocity", cmap="Blues")
interp_orbit.plot.scatter(y="azimuth_time", x="position", color="red")
plt.show()
<Figure size 1000x500 with 2 Axes>

Calibration

Open Calibration lut data

calibration_lut = xr.open_dataset(
    remote_product_path_1, group="quality/calibration", engine="zarr"
)

Calibrate Data

calibration_matrix = calibration_lut.interp_like(burst)
calibrated_measurement = burst / calibration_matrix["sigma_nought"]

Plot Full Data

plt.figure(figsize=(20, 4))
_ = abs(burst).plot(y="azimuth_time", vmax=200)

Geocoding using GCPs

Open GCP Data

gcp = xr.open_dataset(remote_product_path_1, group="conditions/gcp", engine="zarr")

Interpolate and assign new geographic coordinates

gcp_iterpolated = gcp.interp_like(burst)
burst = burst.assign_coords(
    {"latitude": gcp_iterpolated.latitude, "longitude": gcp_iterpolated.longitude}
)

Plot Subset

import cartopy.crs as ccrs

_, ax = plt.subplots(subplot_kw={"projection": ccrs.Miller()}, figsize=(12, 8))
gl = ax.gridlines(
    draw_labels=True, crs=ccrs.PlateCarree(), x_inline=False, y_inline=False
)
abs(burst[:, 7000:9000]).plot(
    ax=ax, transform=ccrs.PlateCarree(), x="longitude", y="latitude", vmax=200
)
plt.show()
<Figure size 2000x400 with 2 Axes><Figure size 1200x800 with 2 Axes>

RGB Plot of two non coregistred burst

The RBG plot shows the shift between the non coregistred bursts

  • swath:IW1
  • polarization:VH
  • burst_id:249411
  • burst acquisition date:
    • 2023-12-01
    • 2023-11-19

Open Data

slc_1 = xr.open_dataset(remote_product_path_1, group="measurements", engine="zarr")[
    "slc"
]
slc_2 = xr.open_dataset(remote_product_path_2, group="measurements", engine="zarr")[
    "slc"
]

amp_1 = np.abs(slc_1).drop_vars(["azimuth_time", "slant_range_time"])
amp_2 = np.abs(slc_2).drop_vars(["azimuth_time", "slant_range_time"])

Compose RGB

rgb = xr.concat([amp_1, amp_2, amp_2], dim="rgb")
rgb = xr.where(rgb > 200, 200, rgb) / 200

Plot Subset

plt.figure(figsize=(12, 8))
rgb[:, :, 7000:9000].plot.imshow(rgb="rgb")
plt.show()
<Figure size 1200x800 with 1 Axes>