Skip to article frontmatterSkip to article content

Sentinel-1 L1 NRB product format prototype

ESA

1. Introduction

In this notebook we will show an example of slc TOPSAR product and some easy usage examples.

Objectives

  • Allow easy access to NRB product
  • Provide ready-to-use datasets and data variable
  • Allow users to open and manipulate data using both standard external tools and the EOPF

Relevant features

  • Different polarizations, acquisition times are aligned and can be stacked together
  • The coordinates associated to the data are the phisical coordinates
  • The zarr product will adhere to CF convetion (this allow the user to open the prodoct with standards tools, such as xarray, exploiting properly the data coordinates).
  • Phase and phase_model are optional variables. If present NRB product is equivalent to GSLC.
  • STAC attributes (will be added in future)

Notes

This is a preliminary example of product

  • Not all the metadata are included in these product prototype, but they will be included in the future.
  • Among the excluded metadata, there are:
    • qualityInformation
  • The stac attrabutes are still to be defined.
  • The name of the variables are preliminary and they may change in the future.
  • Variable and group attributes will be refined in the future, including:
    • long_name
    • units
    • standard names for coordinates
  • The chunking is not defined yet.
  • Products naming convention is to be defined.
  • Reading from local and remote storage with EOPF is experimental (branch feat/coords_in_vars, commit 10a4f2e1) and not offically released.

2. Import modules

Dependencies

  • numpy
  • xarray
  • datatree
  • os
  • matplotlib
  • eopf
import numpy as np
import xarray as xr
import datatree
import matplotlib.pyplot as plt

3. Read products

Read local files with EOPF

The listed file do not work with the latest eopf library and therefore the next cells are commented out

# # local files
# !wget -q -r -nc -nH --cut-dirs=5 https://storage.sbg.cloud.ovh.net/v1/AUTH_8471d76cdd494d98a078f28b195dace4/sentinel-1-public/demo_product/nrb/ --no-parent -P /DIR_TO_WRITE_YOUR_PRODUCT/ --reject "index.html*"
# local_files = ['DIR_TO_WRITE_YOUR_PRODUCT/S01SIWNRB_20240106T170607_0028_A117_S000_5464A_DV.zarr',
#                'DIR_TO_WRITE_YOUR_PRODUCT/S01SIWNRB_20240205T051200_0027_A022_S000_5464A_DV.zarr',
#                'DIR_TO_WRITE_YOUR_PRODUCT/S01SIWNRB_20240205T051225_0028_A022_S000_5464A_DV.zarr']
# ss = EOZarrStore(local_files[2])
# aa = ss.open()
# eop = aa.load()

Read remote files with xarray

# remote fles
files = [
    "https://storage.sbg.cloud.ovh.net/v1/AUTH_8471d76cdd494d98a078f28b195dace4/sentinel-1-public/demo_product/nrb/S01SIWNRB_20240106T170607_0028_A117_S000_5464A_DV.zarr",
    "https://storage.sbg.cloud.ovh.net/v1/AUTH_8471d76cdd494d98a078f28b195dace4/sentinel-1-public/demo_product/nrb/S01SIWNRB_20240205T051200_0027_A022_S000_5464A_DV.zarr",
    "https://storage.sbg.cloud.ovh.net/v1/AUTH_8471d76cdd494d98a078f28b195dace4/sentinel-1-public/demo_product/nrb/S01SIWNRB_20240205T051225_0028_A022_S000_5464A_DV.zarr",
]
dt = {}

for k, f in enumerate(files):
    dt[k] = datatree.open_datatree(f, engine="zarr", chunks={})

4. Product structure

EOPF

# eop

Xarray

dt[0]
Loading...

measurements

dt[0].measurements
Loading...

measurements.nrb

dt[0].measurements.nrb
Loading...

measurements.nlooks

dt[0].measurements.nlooks
Loading...

conditions

conditions.refdem

dt[0].conditions.refdem
Loading...

5. Examples of product usage

Selection with decimation factor 16 x 16

dt_sel = dt[0].measurements.isel(x=slice(None, None, 16), y=slice(None, None, 16))
extent = [
    dt_sel.x.min().values,
    dt_sel.x.max().values,
    dt_sel.y.min().values,
    dt_sel.y.max().values,
]
fig, ((ax1, ax2, ax3), (ax4, ax5, ax6)) = plt.subplots(
    nrows=2, ncols=3, figsize=(20, 20)
)
f = ax1.imshow(
    dt_sel.nrb.sel(polarization="VV", time=np.datetime64("2024-01-06", "ns"))
    * dt_sel.gamma_ref,
    vmin=0,
    vmax=2,
    origin="lower",
    extent=extent,
)
ax1.set_xlabel("east [m]", fontsize=10)
ax1.set_ylabel("north [m]", fontsize=10)
ax1.set_title("Sigma nought", fontsize=10)
ax1.grid()
fig.colorbar(f, ax=ax1, orientation="horizontal")

f = ax2.imshow(dt_sel.gamma_ref, vmin=0, vmax=2, origin="lower", extent=extent)
ax2.set_xlabel("east [m]", fontsize=10)
ax2.set_ylabel("north [m]", fontsize=10)
ax2.set_title("Gamma flattening", fontsize=10)
ax2.grid()
fig.colorbar(f, ax=ax2, orientation="horizontal")

f = ax3.imshow(dt_sel.inc, origin="lower", extent=extent)
ax3.set_xlabel("east [m]", fontsize=10)
ax3.set_ylabel("north [m]", fontsize=10)
ax3.set_title("Incidence angle", fontsize=10)
ax3.grid()
fig.colorbar(f, ax=ax3, orientation="horizontal")

f = ax4.imshow(
    dt_sel.nrb.sel(polarization="VV", time=np.datetime64("2024-01-06", "ns")),
    vmin=0,
    vmax=2,
    origin="lower",
    extent=extent,
)
ax4.set_xlabel("east [m]", fontsize=10)
ax4.set_ylabel("north [m]", fontsize=10)
ax4.set_title("Gamma nought VV", fontsize=10)
ax4.grid()
fig.colorbar(f, ax=ax4, orientation="horizontal")

f = ax5.imshow(
    dt_sel.nrb.sel(polarization="VH", time=np.datetime64("2024-01-06", "ns")),
    vmin=0,
    vmax=0.5,
    origin="lower",
    extent=extent,
)
ax5.set_xlabel("east [m]", fontsize=10)
ax5.set_ylabel("north [m]", fontsize=10)
ax5.set_title("Gamma nought VH", fontsize=10)
ax5.grid()
fig.colorbar(f, ax=ax5, orientation="horizontal")

im1 = ax6.imshow(
    dt_sel.nrb.sel(polarization="VV", time=np.datetime64("2024-01-06", "ns")),
    cmap=plt.cm.Reds,
    interpolation="nearest",
    vmin=0,
    vmax=2,
    origin="lower",
    extent=extent,
)
im1 = ax6.imshow(
    dt_sel.nrb.sel(polarization="VH", time=np.datetime64("2024-01-06", "ns")),
    cmap=plt.cm.Greens,
    interpolation="nearest",
    vmin=0,
    vmax=0.3,
    alpha=0.8,
    origin="lower",
    extent=extent,
)
# f = ax6.imshow(wrap(dt_sel.phase.sel(polarization='VV', time=np.datetime64('2024-01-06', 'ns'))), vmin=-np.pi, vmax=np.pi, origin='lower', extent=extent)
ax6.set_xlabel("east [m]", fontsize=10)
ax6.set_ylabel("north [m]", fontsize=10)
ax6.set_title("Phase", fontsize=10)
ax6.grid()
fig.colorbar(im1, ax=ax6, orientation="horizontal")

fig.tight_layout()
<Figure size 2000x2000 with 12 Axes>
/home/mclaus@eurac.edu/micromamba/envs/eopf-zarr/lib/python3.11/site-packages/dask/core.py:127: RuntimeWarning: invalid value encountered in divide
  return func(*(_execute_task(a, cache) for a in args))

Mix of different polarizations

# rescaling for visualization purpose
vv_max = (
    dt_sel.nrb.sel(polarization="VV", time=np.datetime64("2024-01-06", "ns"))
    .compute()
    .quantile(0.9, skipna=True)
)
vh_max = (
    dt_sel.nrb.sel(polarization="VH", time=np.datetime64("2024-01-06", "ns"))
    .compute()
    .quantile(0.9, skipna=True)
)
r = (
    dt_sel.nrb.sel(polarization="VV", time=np.datetime64("2024-01-06", "ns")).drop(
        ["polarization", "time"]
    )
    / vv_max
)
g = (
    dt_sel.nrb.sel(polarization="VH", time=np.datetime64("2024-01-06", "ns")).drop(
        ["polarization", "time"]
    )
    / vh_max
)
b = 2 * np.abs(r - g) / (r + g)
/tmp/ipykernel_1126868/4188562811.py:13: DeprecationWarning: dropping variables using `drop` is deprecated; use drop_vars.
  dt_sel.nrb.sel(polarization="VV", time=np.datetime64("2024-01-06", "ns")).drop(
/tmp/ipykernel_1126868/4188562811.py:19: DeprecationWarning: dropping variables using `drop` is deprecated; use drop_vars.
  dt_sel.nrb.sel(polarization="VH", time=np.datetime64("2024-01-06", "ns")).drop(
# concatenation of different bands
rgb = xr.concat([r, g, b], dim="rgb")
rgb = xr.where(rgb > 1, 1, rgb)
plt.figure(figsize=(12, 8))
rgb.plot.imshow(rgb="rgb")
plt.grid()
<Figure size 1200x800 with 1 Axes>

Selection based on geographic coordinates

dt_sel = []
for k, v in dt.items():
    dt_sel.append(
        v.measurements.sel(x=slice(260005, 360005), y=slice(4500025, 4800025))
        .to_dataset()
        .chunk(1024)
    )
dt_sel[0]
Loading...

Mosaic

dt_align = xr.align(*dt_sel, join="outer", fill_value=0)
nrb, w = [], []

for i in dt_align:
    a = i.nrb.sel(polarization="VV").sum(dim="time")
    a = a.where(np.isfinite(a), other=0)
    nrb.append(a)
    a = i.nlooks
    a = a.where(np.isfinite(a), other=0)
    w.append(a)
nlooks = w[0] + w[1] + w[2]
mosaic = (nrb[0] * w[0] + nrb[1] * w[1] + nrb[2] * w[2]) / nlooks
extent = [
    mosaic.x.min().values,
    mosaic.x.max().values,
    mosaic.y.min().values,
    mosaic.y.max().values,
]
fig, (ax1, ax2, ax3) = plt.subplots(nrows=1, ncols=3, figsize=(20, 20))
im1 = ax1.imshow(
    nrb[0].isel(x=slice(None, None, 16), y=slice(None, None, 16)),
    interpolation="bilinear",
    vmin=0,
    vmax=2,
    origin="lower",
    extent=extent,
)
im2 = ax2.imshow(
    nrb[1].isel(x=slice(None, None, 16), y=slice(None, None, 16)),
    interpolation="bilinear",
    vmin=0,
    vmax=2,
    origin="lower",
    extent=extent,
)
im3 = ax3.imshow(
    nrb[2].isel(x=slice(None, None, 16), y=slice(None, None, 16)),
    interpolation="bilinear",
    vmin=0,
    vmax=2,
    origin="lower",
    extent=extent,
)
<Figure size 2000x2000 with 3 Axes>
extent = [
    mosaic.x.min().values,
    mosaic.x.max().values,
    mosaic.y.min().values,
    mosaic.y.max().values,
]
fig, ax1 = plt.subplots(nrows=1, ncols=1, figsize=(20, 20))
im1 = ax1.imshow(
    mosaic.isel(x=slice(None, None, 2), y=slice(None, None, 2)),
    cmap=plt.cm.gray,
    interpolation="bilinear",
    vmin=0,
    vmax=1,
    origin="lower",
    extent=extent,
)
ax1.set_xlabel("east [m]", fontsize=10)
ax1.set_ylabel("north [m]", fontsize=10)
ax1.set_title("Gamma nought VV Mosaic", fontsize=10)
ax1.grid()
fig.colorbar(im1, ax=ax1, orientation="vertical")
<Figure size 2000x2000 with 2 Axes>
mosaic
Loading...

6. Save & re-read derived products

Save & re-read mosaic with x-array from remote storage

Save & re-read mosaic with x-array from local storage

f = "DIR_TO_WRITE_YOUR_PRODUCT/S1A_NRB_VV_UTM33_260005_360005_4500025_4800025.zarr"
mosaic.chunk(1024).to_dataset(name="nrb").to_zarr(f, group="measurements", mode="w")
nlooks.chunk(1024).to_dataset(name="nlooks").to_zarr(f, group="quality", mode="a")
dt_mosaic = datatree.open_datatree(f, engine="zarr")
dt_mosaic

Read mosaic with EOPF from local storage

# xs = EOZarrStore(
#     "DIR_TO_WRITE_YOUR_PRODUCT/S1A_NRB_VV_UTM33_260005_360005_4500025_4800025.zarr"
# )
# ss = xs.open()
# eop = ss.load()
# eop